AP Calculus AB Lesson 8-3, Parts 1 & 2 Learning Check

Name	Henl	2017	
Date	/ 1		

For now, skip problems (1c), (2c), and (3b) – we will come back to them later. Attempt all remaining parts!

CALCULATOR ACTIVE

- Let R be the shaded region in the first quadrant enclosed by the graphs of y = e^{-x²}, y = 1 - cos x, and the y-axis, as shown in the figure above.
 - (a) Find the area of the region R.
 - (b) Find the volume of the solid generated when the region R is revolved about the x-axis.
 - The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

a.
$$A = \int_0^A (e^{-x^2} - (1 - \cos x)) dx$$

= .590 or .591

to get intersection. store 1 x = .941944 as A e-x = 1- cos x

A right olick waters

- Plessel

Page 2

CALCULATOR ACTIVE

- Let R be the shaded region bounded by the graphs of y = √x and y = e^{-3x} and the vertical line x = 1, as shown in the figure above.
 - (a) Find the area of R.
 - (b) Find the volume of the solid generated when R is revolved about the <u>horizontal</u> line y = 1.

Short as A

$$\sqrt{x} = e^{-3x}$$

b.
$$V = T \left((1 - e^{-3x})^2 - (1 - \sqrt{x})^2 \right) dx$$

= .4531

CALCULATOR ACTIVE

- 3. Let R be the region in the first quadrant bounded by the x-axis and the graphs of $y = \ln x$ and y = 5 - x, as shown in the figure above.
 - (a) Find the area of R.

Region R is the base of a solid. For the solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid.

(c) The horizontal line y = k divides R into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of k.

a. Integrate w.r.t.y. $y = 5 + x \qquad y = \ln x$ $x = 5 - y \qquad x = e^{y}$

$$A = \int_{0}^{A} \ln x \, dx + \int_{A}^{5} (5-x) \, dx$$

$$C_{1} \int_{0}^{K} (5-y-e^{y}) \, dy = \frac{1}{2} 2.986$$

AP Calculus AB

8-3 Volumes of Revolution Learning Check ANSWERS

1

Region
$$R$$

$$e^{-x^2} = 1 - \cos x \text{ at } x = 0.941944 = A$$

 Correct limits in an integral in (a), (b), or (c).

(a) Area =
$$\int_0^A (e^{-x^2} - (1 - \cos x)) dx$$

= 0.590 or 0.591

 $\begin{array}{c}
1 : \text{ integrand} \\
1 : \text{ answer}
\end{array}$

(b) Volume =
$$\pi \int_0^A \left(\left(e^{-x^2} \right)^2 - (1 - \cos x)^2 \right) dx$$

= $0.55596\pi = 1.746$ or 1.747

 $\begin{array}{c} 2: \text{ integrand and constant} \\ <-1> \text{ each error} \\ 1: \text{ answer} \end{array}$

$$\begin{cases} 2: & \text{integrand} \\ <-1> & \text{each error} \end{cases}$$
 Note: $0/2$ if not of the form
$$k \int_{c}^{d} (f(x) - g(x))^{2} dx$$
 1: answer

2. Point of intersection

$$e^{-3x} = \sqrt{x}$$
 at $(T, S) = (0.238734, 0.488604)$

(a) Area =
$$\int_{T}^{1} (\sqrt{x} - e^{-3x}) dx$$

= 0.442 or 0.443

(b) Volume =
$$\pi \int_{T}^{1} ((1 - e^{-3x})^2 - (1 - \sqrt{x})^2) dx$$

= 0.453π or 1.423 or 1.424

 Correct limits in an integral in (a), (b), or (c)

$$2:$$
 $\begin{cases} 1: \text{integrand} \\ 1: \text{answer} \end{cases}$

$$\begin{array}{c} 2: \text{integrand} \\ <-1> \text{ reversal} \\ <-1> \text{ error with constant} \\ <-1> \text{ omits 1 in one radius} \\ <-2> \text{ other errors} \\ 1: \text{ answer} \end{array}$$

(c) Length =
$$\sqrt{x} - e^{-3x}$$

Height = $5(\sqrt{x} - e^{-3x})$

Volume =
$$\int_{T}^{1} 5(\sqrt{x} - e^{-3x})^{2} dx = 1.554$$

3:
$$\begin{cases} 2: \text{integrand} \\ <-1> \text{incorrect but has} \\ \sqrt{x} - e^{-3x} \\ \text{as a factor} \end{cases}$$

3. $\ln x = 5 - x \implies x = 3.69344$

Therefore, the graphs of $y = \ln x$ and y = 5 - x intersect in the first quadrant at the point (A, B) = (3.69344, 1.30656).

(a) Area =
$$\int_0^B (5 - y - e^y) dy$$

= 2.986 (or 2.985)

3 : { 1 : integrand 1 : limits 1 : answer

OR

Area =
$$\int_{1}^{A} \ln x \, dx + \int_{A}^{5} (5 - x) \, dx$$

= 2.986 (or 2.985)

(b) Volume =
$$\int_{1}^{A} (\ln x)^{2} dx + \int_{A}^{5} (5 - x)^{2} dx$$

3: { 2 : integrands 1 : expression for total volume

(c)
$$\int_0^k (5 - y - e^y) dy = \frac{1}{2} \cdot 2.986$$
 (or $\frac{1}{2} \cdot 2.985$)

 $3: \begin{cases} 1 : integrand \\ 1 : limits \\ 1 : equation \end{cases}$